Thursday, October 25, 2012

Researchers Develop Efficient, Protein-based Method For Creating iPS Cells

Source: Stanford University School of Medicine
Date: October 25, 2012

Summary:

Coaxing a humble skin cell to become a jack-of-all-trades pluripotent stem cell is feat so remarkable it was honored earlier this month with the Nobel Prize in Physiology or Medicine. Stem cell pioneer Shinya Yamanaka, MD, PhD, showed that using a virus to add just four genes to the skin cell allowed it to become pluripotent, or able to achieve many different developmental fates. But researchers and clinicians have been cautious about promoting potential therapeutic uses for these cells because the insertion of the genes could render the cells cancerous.

Now researchers at the Stanford University School of Medicine have devised an efficient and safer way to make these induced pluripotent stem cells, or iPS cells, by using just the proteins that the genes encode.

The research is published in the Oct. 26 issue of Cell.

Researchers at the Doorstep of Stem Cell Therapies for MS, Other Myelin Disorders

Source: University of Rochester Medical Center
Date: October 25, 2012

Summary:

When the era of regenerative medicine dawned more than three decades ago, the potential to replenish populations of cells destroyed by disease was seen by many as the next medical revolution. However, what followed turned out not to be a sprint to the clinic, but rather a long tedious slog carried out in labs across the globe required to master the complexity of stem cells and then pair their capabilities and attributes with specific diseases.

In a review article appearing today in the journal Science, University of Rochester Medical Center scientists Steve Goldman, M.D., Ph.D., , and Martha Windrem, Ph.D., contend that researchers are now on the threshold of human application of stem cell therapies for a class of neurological diseases known as myelin disorders – a long list of diseases that include conditions such as multiple sclerosis, white matter stroke, cerebral palsy, certain dementias, and rare but fatal childhood disorders called pediatric leukodystrophies.

Friday, October 19, 2012

Scientists Pinpoint Key Player in Parkinson's disease neuron loss Stem cell study may help to unravel how a genetic mutation leads to Parkinson's Symptoms

Source: Salk Institute for Biological Studies
Date: October 19, 2012

LA JOLLA, CA—By reprogramming skin cells from Parkinson's disease patients with a known genetic mutation, researchers at the Salk Institute for Biological Studies have identified damage to neural stem cells as a powerful player in the disease. The findings, reported online October 17, 2012 in Nature, may lead to new ways to diagnose and treat the disease.

The scientists found that a common mutation to a gene that produce the enzyme LRRK2, which is responsible for both familial and sporadic cases of Parkinson's disease, deforms the membrane surrounding the nucleus of a neural stem cell. Damaging the nuclear architecture leads to destruction of these powerful cells, as well as their decreased ability to spawn functional neurons, such as the ones that respond to dopamine.

The Salk researchers found that a common genetic mutation involved in Parkinson's disease deforms the membranes (green) surrounding the nuclei (blue) of neural stem cells. The discovery may lead to new ways to diagnose and treat the disease.

Thursday, October 04, 2012

StemCells, Inc. Announces First Transplant of Neural Stem Cells Into Patient in Clinical Trial for Dry Age-Related Macular Degeneration

Source: StemCells, Inc.
Date: October 4, 2012

 Summary:

 NEWARK, Calif. -- StemCells, Inc. today announced that the first patient in its Phase I/II clinical trial in dry age-related macular degeneration (AMD) has been enrolled and transplanted. The trial is designed to evaluate the safety and preliminary efficacy of the Company's proprietary HuCNS-SC® product candidate (purified human neural stem cells) as a treatment for dry AMD, and the patient was transplanted with the cells yesterday at the Retina Foundation of the Southwest (RFSW) in Dallas, Texas, one of the leading independent vision research centers in the United States. AMD afflicts approximately 30 million people worldwide and is the leading cause of vision loss and blindness in people over 55 years of age.