Source: University of Oregon
Date: May 14, 2009
Summary:
Driving Miranda, a protein in fruit flies crucial to switch a stem cell's fate, is not as complex as biologists thought, according to University of Oregon biochemists. They've found that one enzyme (aPKC) stands alone and acts as a traffic cop that directs which roads daughter cells will take.
"Wherever aPKC is at on a cell's cortex or membrane, Miranda isn't," says Kenneth E. Prehoda, a professor in the chemistry department and member of the University of Oregon's Institute of Molecular Biology. When a stem cell duplicates into daughter cells, the side, or cortical domain, containing aPKC (atypical protein kinase C) continues as a stem cell, while the other domain with Miranda becomes a differentiated cell such as a neuron that forms the central nervous system.
Prehoda and co-author Scott X. Atwood, who studied in Prehoda's lab and recently earned his doctorate, describe how the mechanism works in the May 12 issue of the journal Current Biology.