Sunday, August 09, 2009

New steps forward in cell reprogramming

Source: Harvard University
Date: August 9, 2009

Summary:

Harvard Stem Cell Institute (HSCI) researchers at Massachusetts General Hospital (MGH) have substantially improved the odds of successfully reprogramming differentiated cells into induced pluripotent stem cells (iPS) by blocking the activity of the gene that instructs the cells to stop dividing.

Konrad Hochedlinger and colleagues at the MGH Center for Regenerative Medicine also found that reprogramming efforts are more likely to be successful if they target immature cells rather than their more mature counterparts for reprogramming.
Induced pluripotent cells are adult cells that have been reprogrammed back to an embryo-like state in which they have regained the potential to turn into any of the 220 cell types in the body, such as liver cells, skin cells, or heart cells. “This has been a main question and main interest in the field for a long time,” says Hochedlinger. “When you work with mature cells, for some reason only a few of them actually reprogram into an iPS cell: Why is the reprogramming process so inefficient?”
The team has devised two solutions for the problem of inefficiency, one of which involves selecting only certain cell types for reprogramming. The work is being published in two separate reports, one in the journal Nature, and the other in Nature Genetics.