Thursday, September 17, 2009

ANTIOXIDANT CONTROLS SPINAL CORD DEVELOPMENT

Source: Johns Hopkins Medical Institutions
Date: September 17, 2009

Summary:

Researchers at the Johns Hopkins School of Medicine have discovered how one antioxidant protein controls the activity of another protein, critical for the development of spinal cord neurons. The research, publishing this week in Cell, describes a never-before known mechanism of protein control. Previous research had shown that the GDE2 protein can cause immature cells in the spinal cord to differentiate into motor neurons, the nerve cells that connect to and control muscle contraction. Too little GDE2 causes motor neurons to not develop, while too much GDE2 causes them to develop too quickly, depleting progenitor pools.