Source: Stanford University Medical Center
Date: December 22, 2009
Summary:
Scientists have discovered a protein required to quickly and efficiently reprogram human skin cells to express embryonic stem cell genes. Scientists believe there is much promise for induced pluripotent stem cells: normal adult cells that have been manipulated to develop the stem-cell-like ability to differentiate into other types of cells, potentially to be used to repair damaged tissue and treat the ravages of disease.
But making these so-called iPS cells is both time-consuming and inefficient. Now researchers at Stanford’s School of Medicine have discovered a protein required to quickly and efficiently reprogram human skin cells to express embryonic stem cell genes. The finding could eliminate a major bottleneck in the generation of iPS and embryonic stem cells — that of removing molecular tags called methyl groups from specific regions of cellular DNA. Without this process of demethylation, the stem cell genes are silent in adult, or differentiated, cells. The research is published online in the Dec. 21 issue of Nature.