Sunday, February 07, 2010

Virus-free technique enables scientists to easily make stem cells pluripotent

Source: Stanford University Medical Center
Date: February 7, 2010

Summary:

Tiny circles of DNA are the key to a new and easier way to transform stem cells from human fat into induced pluripotent stem cells for use in regenerative medicine, say scientists at the Stanford University School of Medicine. Unlike other commonly used techniques, the method, which is based on standard molecular biology practices, does not use viruses to introduce genes into the cells or permanently alter a cell's genome.

It is the first example of reprogramming adult cells to pluripotency in this manner, and is hailed by the researchers as a major step toward the use of such cells in humans. They hope that the ease of the technique and its relative safety will smooth its way through the necessary FDA approval process.

The Stanford researchers used the so-called minicircles - rings of DNA about one-half the size of those usually used to reprogram cell - to induce pluripotency in stem cells from human fat. Pluripotent cells can then be induced to become many different specialized cell types. Although the researchers plan to first use these cells to better understand - and perhaps one day treat-human heart disease, induced pluripotent stem cells, or iPS cells, are a starting point for research on many human diseases. The research will be published online Feb. 7 in Nature Methods. Research assistant Fangjun Jia, PhD is the lead author of the work.