Source: University of California - San Francisco
Date: August 5, 2010
Summary:
University of California, San Francisco researchers are reporting the first success in very rapidly purifying one type of embryonic stem cell from a mix of many different types of embryonic stem cells in the culture dish. The technique, which avoids the need to genetically alter the cells to distinguish them, is a key advance, the researchers say, for obtaining the appropriate cells for repairing specific damaged tissues.
The new strategy links two existing technologies for the first time: the ability to identify specific embryonic stem cell types in a culture of different embryonic stem cells, and a way to efficiently sort them at a very high rate, a procedure known as “high throughput” processing.
The research finding is currently published online in the journal Stem Cells and Development and will appear later this year in a print edition of the journal. Embryonic stem cells, which replicate indefinitely in the culture dish, are capable of forming almost any tissue in the body. Over time, they begin to specialize as specific cell types, such as cardiomyocytes of the heart or neurons of the brain. One goal for stem cell therapy is to be able to identify cells that have begun to specialize in a particular way so that they could serve as a source of cells to repair specific damaged tissues.