Source: Sanford-Burnham Medical Research Institute
Date: March 7, 2011
Summary:
LA JOLLA, Calif.,– In the past few months, a slew of papers have indicated that the therapeutic potential of a promising type of stem cell, called induced pluripotent stem (iPS) cells, might be limited by reprogramming errors and genomic instability. iPS cells are engineered by reprogramming fully differentiated adult cells, often skin cells, back to a primitive, embryonic-like state. Given these problems, a team of researchers at Sanford-Burnham Medical Research Institute (Sanford-Burnham), Chung-Ang University in Korea, the University of British Columbia, Harvard Medical School and elsewhere wondered if there might be a better way to regenerate lost tissue to treat conditions like heart disease and stroke. Writing March 4 in the Proceedings of the National Academy of Sciences, they outline a method to obtain a new kind of stem cell they call “induced conditional self-renewing progenitor (ICSP) cells.”
In this study, ICSP cells differentiated into active neurons and other brain cell types with therapeutic payoff for an adult rat model of intracerebral hemorrhagic stroke -- the rodents show improved behavioral performance. Although the long-term genomic stability of ICSP cells remains to be seen, no adverse effects have arisen over five months of observation. The team envisions that this ICSP approach will also extend to progenitor cells obtained from other organs, such as heart, pancreas, or muscle, potentially accelerating the use of stem cell therapies for a broad range of diseases.