Source: University of Wisconsin-Madison
Date: March 13, 2012
Summary:
For the first time, scientists at the University of Wisconsin-Madison have made early retina structures containing proliferating neuroretinal progenitor cells using induced pluripotent stem (iPS) cells derived from human blood.
And in another advance, the retina structures showed the capacity to form layers of cells - as the retina does in normal human development - and these cells possessed the machinery that could allow them to communicate information. (Light-sensitive photoreceptor cells in the retina along the back wall of the eye produce impulses that are ultimately transmitted through the optic nerve and then to the brain, allowing you to see.) Put together, these findings suggest that it is possible to assemble human retinal cells into more complex retinal tissues, all starting from a routine patient blood sample.
Many applications of laboratory-built human retinal tissues can be envisioned, including using them to test drugs and study degenerative diseases of the retina such as retinitis pigmentosa, a prominent cause of blindness in children and young adults. One day, it may also be possible replace multiple layers of the retina in order to help patients with more widespread retinal damage.
The study is published in the journal Investigative Ophthalmology & Visual Science.