Source: University of California - Davis
Date: November 9, 2009
Summary:
(SACRAMENTO, Calif.) — Twenty-six years after scientists first suspected their existence, UC Davis researchers provide definitive evidence that certain neural progenitor cells, which can be identified by their expression of a myelin gene promoter, are present throughout the adult brain and spinal cord, and that these cells are capable of differentiating into neurons.
Using genetic fate mapping — a technique for detailing the developmental path of cells — Pleasure and his team found that cells known as PPEPs (pronounced pee-peps) differentiate into the three main types of neural cells: astrocytes, oligodendrocytes and neurons. Neurons are the main cells of the brain, responsible for communicating with each other and responding to stimuli. The other two cell types — known as glial cells — play supporting roles in brain functions.
The findings, reported in June 2009 issue of the Journal of Neuroscience, open up a new way of thinking about using multipotent progenitor cells to treat diseases of the brain and spinal cord, such as Huntington’s disease and traumatic brain injury. Now the UC Davis team and other stem cell scientists have a new class of endogenous neural progenitor cells with which to work.