Source: University of Connecticut
Date: June 8, 2010
Summary:
For the millions of aging Americans who suffer from joint pain, stem cells may be riding to the rescue. Scientists at the University of Connecticut Health Center have recently developed a technique that reliably converts stem cells into cartilage cells. Someday, that might allow doctors to grow replacement cartilage in a laboratory for the surgical repair of joints lost to injury or impaired by degenerative diseases such as arthritis.
Stem cells have an unlimited capacity for self-renewal, as well as the ability to become any type of cell in the human body, so they are ideal for generating replacement cartilage tissue to repair damaged cartilage. Developmental biologists, like Dr. Caroline Dealy, an associate professor at UConn’s Center for Regenerative Medicine and Skeletal Development, are attempting to understand the signals and conditions that regulate how stem cells differentiate into articular chondrocytes – which make up the unique type of cartilage present at the surface of joints.
Research published in the Journal of Cellular Physiology in April details how Dealy and her colleague, Dr. Robert Kosher, a former professor at the Health Center, successfully developed a methodology to direct “substantially uniform and progressive in vitro differentiation of human embryonic stem cells (hESC) and induced pluripotent stem cells (iPSC) into the chondrogenic lineage.”