Friday, January 29, 2010

Novel Theory for Mammalian Stem Cell Regulation

Source: Stowers Institute for Medical Research
Date: January 29, 2010

Summary:

Linheng Li, Ph.D., a Stowers Institute Investigator, together with Hans Clevers, M.D., Ph.D., Director of the Hubrecht Institute in Utrecht, Netherlands, co-authored a prospective review published today by the journal Science that proposes a model of mammalian adult stem cell regulation that may explain how the coexistence of two disparate stem cell states regulates both stem cell maintenance and simultaneously supports rapid tissue regeneration.

Adult stem cells are crucial for physiological tissue renewal and regeneration following injury. Current models assume the existence of a single quiescent (resting) population of stem cells residing in a single niche of a given tissue. The Linheng Li Lab and others have previously reported that primitive blood-forming stem cells can be further separated into quiescent (reserved) and active (primed) sub-populations. Emerging evidence indicates that quiescent and active stem cell sub-populations also co-exist in several tissues — including hair follicle, intestine, bone marrow, and potentially in the neural system — in separate yet adjacent microenvironments. In the review, Dr. Li proposes that quiescent and active stem cell populations have separate but cooperative functional roles.