Thursday, November 06, 2008

Scientists confirm a molecular clipping mechanism behind stem cell development

Source: Rockefeller University
Posted: November 6, 2008

Summary:

Stem cells don’t just become a part of the liver or the brain in a flash; it takes a complex molecular choreography and requires that specific genes be switched on and off at specific times. Some of these genes are regulated through a process by which proteins in the cell nucleus, called histones, are chemically modified by small “chemical marks” such as acetyl or methyl groups. New research from Rockefeller University scientists now shows that during specific stages of differentiation in mouse embryonic stem cells, crucial marks can be removed by cutting off the end of the histone’s tail. The research, reported in the October 17 issue of Cell, identifies for the first time a clipping mechanism that scientists first hypothesized nearly 30 years ago. The finding offers new clues about differentiation of embryonic stem cells and raises questions about the potential effects of a new class of cancer treatments that specifically target histones.