Monday, July 20, 2009

Researchers discover genetic circuit that regulates behavior of stem cells

Source: Universitat Politčcnica de Catalunya
Date: July 20, 2009

Summary:

Jordi Garcia Ojalvo -- a lecturer at the Department of Physics and Nuclear Engineering of the Universitat Politčcnica de Catalunya’s School of Industrial and Aeronautical Engineering of Terrassa (ETSEIAT, Spain) -- has discovered the genetic circuit that controls the behavior of embryonic stem cells. The discovery was made in collaboration with University of Cambridge researchers. The process by which a stem cell is transformed into another type of cell is called differentiation, and the ability to change into other cell types is known as pluripotentiality.

Up until now it was generally believed in the international scientific community that embryonic stem cells are in a state of biochemical repose, static, awaiting a signal that causes them to differentiate, that gives them the initial trait which leads them to become bone, blood or skin cells, or any other type of cell of which an organism is composed. Jordi Garcia Ojalvo, one of the coordinators of the Nonlinear Dynamics, Nonlinear Optics and Lasers research group at the UPC’s Terrassa Campus, has discovered that this view is not correct, and that in fact the state of pluripotentiality in stem cells is anything but static.

Greater efficiency in generating new cells.

In a paper published this July in the prestigious journal PLoS Biology, Jordi Garcia Ojalvo and the group headed by University of Cambridge researcher Alfonso Martínez Arias say that the pluripotentiality of embryonic stem cells is not static and that these cells are in fact constantly changing. Garcia-Ojalvo and Martínez-Arias also found that there is always a subset of stem cells that are on alert, ready to respond to the signals that trigger the process of transformation known as differentiation. This ensures that an embryo’s differentiation program is completed correctly and with the necessary speed.