Monday, March 01, 2010

Scientists identify wide variety of genetic splicing in embryonic stem cells

Source: Stanford University Medical Center
Date: March 1, 2010

Summary:

Like homing in to an elusive radio frequency in a busy city, human embryonic stem cells must sort through a seemingly endless number of options to settle on the specific genetic message, or station, that instructs them to become more-specialized cells in the body (Easy Listening, maybe, for skin cells, and Techno for neurons?). Now researchers at the Stanford University School of Medicine have shown that this tuning process is accomplished in part by restricting the number of messages, called transcripts, produced from each gene.

Most genes can yield a variety of transcripts through a process called splicing. Variations in the ways a gene is spliced can change the form and function of the final protein product. Nearly all our genes can be spliced in more than one way. This research is the first time, however, that splicing variety has been linked to the unprecedented developmental flexibility, or pluripotency, exhibited by embryonic stem cells.